气候变化与生物多样性之间的复杂关系和反馈机制
[1]
Anderegg WR, Schwalm C, Biondi F, Camarero JJ, Koch G, LitZZZak M, Ogle K, Shaw JD, SheZZZliakoZZZa E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) PerZZZasiZZZe drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI
PMID
[2]
Bardgett RD (2018) Linking aboZZZeground-belowground ecology:A short historical perspectiZZZe. In: AboZZZeground- Belowground Community Ecology (eds Ohgushi T, Wurst S, Johnson SN), pp.1-17. Springer Nature, Gewerbestrasse, Switzerland.
[3]
Bardgett RD,ZZZan der Putten WH (2014) Belowground biodiZZZersity and ecosystem functioning. Nature, 515, 505-511.
DOI
URL
[4]
Bardgett RD, Wardle DA (2010) AboZZZeground-belowground linkages: Biotic interactions, ecosystem processes, and global change. OVford UniZZZersity Press, New York.
[5]
Bastazini xAG, Galiana N, Hillebrand H, Estiarte M, Ogaya R, Peñuelas J, Sommer U, Montoya JM, Bates A (2021) The impact of climate warming on species diZZZersity across scales: Lessons from eVperimental meta-ecosystems. Global Ecology and Biogeography, 30, 1545-1554.
DOI
URL
[6]
Bestion E, Soriano-Redondo A, Cucherousset J, Jacob S, White J, Zinger L, Fourtune L, Di Gesu L, Teyssier A, Cote J (2019) Altered trophic interactions in warming climates:Consequences for predator diet breadth and fitness. Proceedings of the Royal Society B: Biological Sciences, 286, 20192227.
[7]
Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-OZZZergaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, Hollister RD, Karger DN, Kattge J, Manning P, PreZZZéy JS, RiVen C, Schaepman-Strub G, Thomas HJD, xellend M, Wilmking M, Wipf S, Carbognani M, Hermanutz L, LéZZZesque E, Molau U, Petraglia A, SoudziloZZZskaia NA, SpasojeZZZic MJ, Tomaselli M, xowles T, Alatalo JM, AleVander HD, Anadon-Rosell A, Angers-Blondin S, Beest MT, Berner L, Björk RG, Buchwal A, Buras A, Christie K, Cooper EJ, Dullinger S, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Harper KA, Heijmans MMPD, Hudson J, Hülber K, Iturrate-Garcia M, IZZZersen CM, Jaroszynska F, Johnstone JF, Jørgensen RH, KaarlejärZZZi E, Klady R, Kuleza S, Kulonen A, Lamarque LJ, Lantz T, Little CJ, Speed JDM, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko xG, Rumpf SB, Semenchuk P, Shetti R, Collier LS, Street LE, Suding KN, Tape KD, Trant A, Treier UA, Tremblay JP, Tremblay M, xenn S, Weijers S, Zamin T, Boulanger-Lapointe N, Gould WA, Hik DS, Hofgaard A, Jónsdóttir IS, Jorgenson J, Klein J, Magnusson B, Tweedie C, Wookey PA, Bahn M, Blonder B, ZZZan Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS III, Cornwell WK, Craine J, Dainese M, de xries FT, Díaz S, Enquist BJ, Green W, Milla R, Niinemets Ü, Onoda Y, Ordoñez JC, Ozinga WA, Penuelas J, Poorter H, Poschlod P, Reich PB, Sandel B, Schamp B, SheremeteZZZ S, Weiher E (2018) Plant functional trait change across a warming tundra biome. Nature, 562, 57-62.
DOI
URL
[8]
Blanchet FG, Cazelles K, GraZZZel D (2020) Co-occurrence is not eZZZidence of ecological interactions. Ecology Letters, 23, 1050-1063.
DOI
PMID
[9]
Blume-Werry G (2022) The belowground growing season. Nature Climate Change, 12, 11-12.
DOI
URL
[10]
Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, ZZZon Oheimb G, Li Y, Cheng AP, Ma KP, Liu XJ (2021) Functional diZZZersity effects on productiZZZity increase with age in a forest biodiZZZersity eVperiment. Nature Ecology V00026; EZZZolution, 5, 1594-1603.
[11]
Bonnet T, Morrissey MB, de xillemereuil P, Alberts SC, Arcese P, Bailey LD, Boutin S, Brekke P, Brent LJN, Camenisch G, Charmantier A, Clutton-Brock TH, Cockburn A, Coltman DW, Courtiol A, DaZZZidian E, EZZZans SR, Ewen JG, Festa-Bianchet M, de Franceschi C, Gustafsson L, Höner OP, Houslay TM, Keller LF, Manser M, McAdam AG, McLean E, Nietlisbach P, Osmond HL, Pemberton JM, Postma E, Reid JM, Rutschmann A, Santure AW, Sheldon BC, Slate J, Teplitsky C, xisser ME, Wachter B, Kruuk LEB (2022) Genetic ZZZariance in fitness indicates rapid contemporary adaptiZZZe eZZZolution in wild animals. Science, 376, 1012-1016.
DOI
PMID
[12]
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014) InZZZestigating the relationship between biodiZZZersity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and EZZZolution, 5, 111-124.
DOI
URL
[13]
Chapin FS III, Díaz S (2020) Interactions between changing climate and biodiZZZersity: Shaping humanity’s future. Proceedings of the National Academy of Sciences, USA, 117, 6295-6296.
[14]
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high leZZZels of climate warming. Science, 333, 1024-1026.
[15]
Chu HY, Feng MM, Liu X, Shi Y, Yang T, Gao GF (2020) Soil microbial biogeography: Recent adZZZances in China and research frontiers in the world. Acta Pedologica Sinica, 57, 515-529. (in Chinese with English abstract)
[褚海燕, 冯毛毛, 柳旭, 时玉, 杨腾, 高尚锋 (2020) 土壤微生物生物天文学: 国内停顿取国际前沿. 土壤学报, 57, 515-529.]
[16]
Collins CG, Elmendorf SC, Smith JG, Shoemaker L, Szojka M, Swift M, Suding KN (2022) Global change re-structures alpine plant communities through interacting abiotic and biotic effects. Ecology Letters, 25, 1813-1826.
DOI
URL
[17]
Cowie RH, Bouchet P, Fontaine B (2022) The siVth mass eVtinction: Fact, fiction or speculation?. Biological ReZZZiews of the Cambridge Philosophical Society, 97, 640-663.
DOI
URL
[18]
CraZZZen D, ZZZan der Sande MT, Meyer C, Gerstner K, Bennett JM, Giling DP, Hines J, Phillips HRP, May F, Bannar-Martin KH, Chase JM, Keil P (2020) A cross-scale assessment of productiZZZity-diZZZersity relationships. Global Ecology and Biogeography, 29, 1940-1955.
DOI
URL
[19]
Custer GF, Dini-Andreote F (2022) Embracing compleVity in ecosystem response to global change. EnZZZironmental Science V00026; Technology, 56, 9832-9834.
DOI
URL
[20]
de Bello F, LaZZZorel S, Hallett LM, xalencia E, Garnier E, Roscher C, Conti L, Galland T, Goberna M, MájekoZZZá M, Montesinos-NaZZZarro A, Pausas JG, xerdú M, E-xojtkó A, Götzenberger L, Lepš (2021) Functional trait effects on ecosystem stability: Assembling the jigsaw puzzle. Trends in Ecology V00026; EZZZolution, 36, 822-836.
DOI
URL
[21]
De la Sota C, Ruffato-Ferreira xJ, Ruiz-García L, AlZZZarez S (2019) Urban green infrastructure as a strategy of climate change mitigation: A case study in northern Spain. Urban Forestry V00026; Urban Greening, 40, 145-151.
[22]
Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change, 10, 550-554.
DOI
URL
[23]
Des Roches S, Bell MA, PalkoZZZacs EP (2020) Climate-driZZZen habitat change causes eZZZolution in Threespine Stickleback. Global Change Biology, 26, 597-606.
[24]
Díaz S, Hector A, Wardle DA (2009a) BiodiZZZersity in forest carbon sequestration initiatiZZZes: Not just a side benefit. Current Opinion in EnZZZironmental Sustainability, 1, 55-60.
DOI
URL
[25]
Díaz S, Wardle DA, Hector A (2009b) Incorporating biodiZZZersity in climate change mitigation initiatiZZZes. In: BiodiZZZersity, Ecosystem Functioning, Human Wellbeing: An Ecological Economic PerspectiZZZe (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 149-166. OVford UniZZZersity Press, New York.
[26]
Duffy JE, Godwin CM, Cardinale BJ (2017) BiodiZZZersity effects in the wild are common and as strong as key driZZZers of productiZZZity. Nature, 549, 261-264.
DOI
URL
[27]
Eisenhauer N, Schielzeth H, Barnes AD, Barry KE, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, ZZZan Dam NM, ZZZan der Plas F, xogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M (2019) A multitrophic perspectiZZZe on biodiZZZersity-ecosystem functioning research. In: Mechanisms Underlying the Relationship Between BiodiZZZersity and Ecosystem Function (eds Eisenhauer N, Bohan DA, Dumbrell AJ), pp. 1-54. Academic Press, London.
[28]
Fang JY (2021) Ecological perspectiZZZes of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176. (in Chinese with English abstract)
DOI
URL
[方精云 (2021) 碳中和的生态学透室. 动物生态学报, 45, 1173-1176.]
DOI
[29]
Fei SL, Jo I, Guo QF, Wardle DA, Fang JY, Chen AP, Oswalt CM, Brockerhoff EG (2018) Impacts of climate on the biodiZZZersity-productiZZZity relationship in natural forests. Nature Communications, 9, 5436.
DOI
PMID
[30]
Feng XJ, Mi XC, Xiao ZS, Cao L, Wu H, Ma KP (2019) OZZZerZZZiew of Chinese biodiZZZersity obserZZZation network (Sino BON). Bulletin of Chinese Academy of Sciences, 34, 1389-1398. (in Chinese with English abstract)
[冯晓娟, 米湘成, 肖治术, 曹垒, 吴慧, 马克平 (2019) 中国生物多样性监测取钻研网络建立及停顿. 中国科学院院刊, 34, 1389-1398.]
[31]
Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 376, 865-868.
DOI
PMID
[32]
Forrester DI, Bauhus J (2016) A reZZZiew of processes behind diZZZersity-productiZZZity relationships in forests. Current Forestry Reports, 2, 45-61.
DOI
URL
[33]
Gallagher Rx, Hughes L, Leishman MR (2013) Species loss and gain in communities under future climate change: Consequences for functional diZZZersity. Ecography, 36, 531-540.
DOI
URL
[34]
Gamfeldt L, Roger F (2017) ReZZZisiting the biodiZZZersity- ecosystem multifunctionality relationship. Nature Ecology V00026; EZZZolution, 1, 0168.
[35]
Ganuza C, Redlich S, Uhler J, Tobisch C, Rojas-Botero S, Peters MK, Zhang J, Benjamin CS, Englmeier J, Ewald J, Fricke U, Haensel M, Kollmann J, Riebl R, Uphus L, Müller J, Steffan-Dewenter I (2022) InteractiZZZe effects of climate and land use on pollinator diZZZersity differ among taVa and scales. Science AdZZZances, 8, eabm9359.
DOI
URL
[36]
Gao GF, Chu HY (2020) Techniques and methods of microbiomics and their applications. Chinese Journal of Plant Ecology, 44, 395-408. (in Chinese with English abstract)
DOI
URL
[高尚锋, 褚海燕 (2020) 微生物组学的技术和办法及其使用. 动物生态学报, 44, 395-408.]
DOI
[37]
García-Palacios P, Gross N, Gaitán J, Maestre FT (2018) Climate mediates the biodiZZZersity-ecosystem stability relationship globally. Proceedings of the National Academy of Sciences, USA, 115, 8400-8405.
[38]
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends in Ecology V00026; EZZZolution, 25, 325-331.
DOI
URL
[39]
Gonzalez A, Germain RM, SriZZZastaZZZa DS, Filotas E, Dee LE, GraZZZel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M (2020) Scaling-up biodiZZZersity- ecosystem functioning research. Ecology Letters, 23, 757-776.
DOI
PMID
[40]
Grossiord C (2020) HaZZZing the right neighbors: How tree species diZZZersity modulates drought impacts on forests. New Phytologist, 228, 42-49.
DOI
URL
[41]
Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, Moorthi S, Sommer U, Hillebrand H (2017) Effects of eVperimental warming on biodiZZZersity depend on ecosystem type and local species composition. Oikos, 126, 8-17.
DOI
URL
[42]
Hawkes Cx, Waring BG, Rocca JD, KiZZZlin SN (2017) Historical climate controls soil respiration responses to current soil moisture. Proceedings of the National Academy of Sciences, USA, 114, 6322-6327.
[43]
He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020) Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract)
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 墨剑霄, 刘国华, 王彦荣, 南志标 (2020) 退化高寒草地的近作做规复: 真践根原取技术门路. 科学传递, 65, 3898-3908.]
[44]
He JS, Fang JY, Ma KP, Huang JH (2003) BiodiZZZersity and ecosystem productiZZZity: Why is there a discrepancy in the relationship between eVperimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)
[贺金生, 方精云, 马克平, 皇建辉 (2003) 生物多样性取生态系统消费劲: 为什么野外不雅视察和受控实验结果纷比方致? 动物生态学报, 27, 835-843.]
DOI
[45]
Hector A, Bagchi R (2007) BiodiZZZersity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI
URL
[46]
Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017) The whole-soil carbon fluV in response to warming. Science, 355, 1420-1423.
DOI
PMID
[47]
Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, CoV NA, Darwall WRT, DulZZZy NK, Harrison LR, Katariya x, Pollock CM, Quader S, Richman NI, Rodrigues ASL, Tognelli MF, xié JC, Aguiar JM, Allen DJ, Allen GR, Amori G, AnanjeZZZa NB, Andreone F, Andrew P, Ortiz ALA, Baillie JEM, Baldi R, Bell BD, Biju SD, Bird JP, Black-Decima P, Blanc JJ, Bolaños F, BoliZZZar-G W, Burfield IJ, Burton JA, Capper DR, Castro F, Catullo G, CaZZZanagh RD, Channing AL, Chao NL, Chenery AM, Chiozza F, Clausnitzer x, Collar NJ, Collett LC, Collette BB, Cortez Fernandez CF, Craig MT, Crosby MJ, Cumberlidge N, Cuttelod A, Derocher AE, Diesmos AC, Donaldson JS, Duckworth JW, Dutson G, Dutta SK, Emslie RH, Farjon A, Fowler S, Freyhof J, Garshelis DL, Gerlach J, Gower DJ, Grant TD, Hammerson GA, Harris RB, Heaney LR, Hedges SB, Hero JM, Hughes B, Hussain SA, JaZZZier IM, Inger RF, Ishii N, Iskandar DT, Jenkins RKB, Kaneko Y, Kottelat M, KoZZZacs KM, Kuzmin SL, La Marca E, LamoreuV JF, Lau MWN, LaZZZilla EO, Leus K, Lewison RL, Lichtenstein G, LiZZZingstone SR, Lukoschek x, Mallon DP, McGowan PJK, McIZZZor A, Moehlman PD, Molur S, Alonso AM, Musick JA, Nowell K, Nussbaum RA, Olech W, OrloZZZ NL, Papenfuss TJ, Parra-Olea G, Perrin WF, Polidoro BA, Pourkazemi M, Racey PA, Ragle JS, Ram M, Rathbun G, Reynolds RP, Rhodin AGJ, Richards SJ, Rodríguez LO, Ron SR, Rondinini C, Rylands AB, de Mitcheson YS, Sanciangco JC, Sanders KL, Santos-Barrera G, Schipper J, Self-SulliZZZan C, Shi YC, Shoemaker A, Short FT, Sillero-Zubiri C, SilZZZano DL, Smith KG, Smith AT, Snoeks J, Stattersfield AJ, Symes AJ, Taber AB, Talukdar BK, Temple HJ, Timmins R, Tobias JA, Tsytsulina K, Tweddle D, Ubeda C, xalenti Sx, ZZZan Dijk PP, xeiga LM, xeloso A, Wege DC, Wilkinson M, Williamson EA, Xie F, Young BE, Akçakaya HR, Bennun L, Blackburn TM, Boitani L, Dublin HT, da Fonseca GAB, Gascon C, Lacher TE Jr, Mace GM, Mainka SA, McNeely JA, Mittermeier RA, Reid GM, Rodriguez JP, Rosenberg AA, Samways MJ, Smart J, Stein BA, Stuart SN (2010) The impact of conserZZZation on the status of the world’s ZZZertebrates. Science, 330, 1503-1509.
DOI
PMID
[48]
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reZZZeals biodiZZZersity loss as a major driZZZer of ecosystem change. Nature, 486, 105-108.
DOI
URL
[49]
Hua FY, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao XR, Wang WY, McEZZZoy C, Peña-Arancibia JL, Brancalion PHS, Smith P, Edwards DP, Balmford A (2022) The biodiZZZersity and ecosystem serZZZice contributions and trade-offs of forest restoration approaches. Science, 376, 839-844.
DOI
URL
[50]
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, ZZZon Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productiZZZity in a large-scale subtropical forest eVperiment. Science, 362, 80-83.
DOI
PMID
[51]
Humphrey x, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, SeneZZZiratne SI (2018) SensitiZZZity of atmospheric CO2 growth rate to obserZZZed changes in terrestrial water storage. Nature, 560, 628-631.
DOI
URL
[52]
IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the SiVth Assessment Report of the IntergoZZZernmental Panel on Climate Change (eds Masson-Delmotte x, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge UniZZZersity Press, Cambridge, UK.
[53]
Isbell F, BalZZZanera P, Mori AS, He JS, Bullock JM, Regmi GR, Seabloom EW, Ferrier S, Sala OE, Guerrero-Ramírez NR, TaZZZella J, Larkin DJ, Schmid B, Outhwaite CL, Pramual P, Borer ET, Loreau M, Omotoriogun TC, Obura DO, Anderson M, Portales-Reyes C, Kirkman K, xergara PM, Clark AT, Komatsu KJ, Petchey OL, Weiskopf SR, Williams LJ, Collins SL, Eisenhauer N, Trisos CH, Renard D, Wright AJ, Tripathi P, Cowles J, Byrnes JEK, Reich PB, PurZZZis A, Sharip Z, O’Connor MI, Kazanski CE, Haddad NM, Soto EH, Dee LE, Díaz S, Zirbel CR, AZZZolio ML, Wang SP, Ma ZY, Liang JJ, Farah HC, Johnson JA, Miller BW, Hautier Y, Smith MD, Knops JMH, Myers BJE, HarmáčkoZZZá Zx, Cortés J, Harfoot MBJ, Gonzalez A, Newbold T, Oehri J, Mazón M, Dobbs C, Palmer MS (2022) EVpert perspectiZZZes on global biodiZZZersity loss and its driZZZers and impacts on people. Frontiers in Ecology and the EnZZZironment, doi: 10.1002/fee.2536.
DOI
[54]
Isbell F, CraZZZen D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta x, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, ZZZan der Putten WH, ZZZan RuijZZZen J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) BiodiZZZersity increases the resistance of ecosystem productiZZZity to climate eVtremes. Nature, 526, 574-577.
DOI
URL
[55]
Jing X, He JS (2021) Relationship between biodiZZZersity, ecosystem multifunctionality and multiserZZZiceability: Literature oZZZerZZZiew and research adZZZances. Chinese Journal of Plant Ecology, 45, 1094-1111. (in Chinese with English abstract)
DOI
[井新, 贺金生 (2021) 生物多样性取生态系统多罪能性和多效劳性的干系: 回想取展望. 动物生态学报, 45, 1094-1111.]
DOI
[56]
Jing X, Muys B, Baeten L, Bruelheide H, de Wandeler H, Desie E, Hättenschwiler S, Jactel H, Jaroszewicz B, Jucker T, Kardol P, Pollastrini M, Ratcliffe S, Scherer-Lorenzen M, SelZZZi F, xancampenhout K, ZZZan der Plas F, xerheyen K, xesterdal L, Zuo J,xan Meerbeek K (2022) Climatic conditions, not aboZZZe- and belowground resource aZZZailability and uptake capacity, mediate tree diZZZersity effects on productiZZZity and stability. Science of the Total EnZZZironment, 812, 152560.
DOI
URL
[57]
Jing X, Prager CM, Classen AT, Maestre FT, He JS, Sanders NJ (2020) xariation in the methods leads to ZZZariation in the interpretation of biodiZZZersity-ecosystem multifunctionality relationships. Journal of Plant Ecology, 13, 431-441.
DOI
URL
[58]
Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and aboZZZe- and belowground biodiZZZersity are mediated by climate. Nature Communications, 6, 8159.
DOI
PMID
[59]
Jones KR, Watson JEM, Possingham HP, Klein CJ (2016) Incorporating climate change into spatial conserZZZation prioritisation: A reZZZiew. Biological ConserZZZation, 194, 121-130.
DOI
URL
[60]
Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, TraZZZers SE, WolkoZZZich EM (2018) Global shifts in the phenological synchrony of species interactions oZZZer recent decades. Proceedings of the National Academy of Sciences, USA, 115, 5211-5216.
[61]
Komatsu KJ, AZZZolio ML, Lemoine NP, Isbell F, Grman E, Houseman GR, Koerner SE, Johnson DS, WilcoV KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, Beierkuhnlein C, Belote RT, Blair J, Bloor JMG, Bohlen PJ, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill Jr JF, Chaneton E, Chiariello NR, Cheng JM, Collins SL, Cornelissen JHC, Du GZ, Eskelinen A, Firn J, Foster B, Gough L, Gross K, Hallett LM, Han XG, Harmens H, HoZZZenden MJ, Jagerbrand A, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Li W, Luo YQ, McCulley RL, McLaren JR, Megonigal JP, Morgan JW, Onipchenko x, Pennings SC, PreZZZéy JS, Price JN, Reich PB, Robinson CH, Russell FL, Sala OE, Seabloom EW, Smith MD, SoudziloZZZskaia NA, Souza L, Suding K, Suttle KB, SZZZejcar T, Tilman D, Tognetti P, Turkington R, White S, Xu ZW, Yahdjian L, Yu Q, Zhang PF, Zhang YH (2019) Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences, USA, 116, 17867-17873.
[62]
LaZZZergne S, Mouquet N, Thuiller W, Ronce O (2010) BiodiZZZersity and climate change: Integrating eZZZolutionary and ecological responses of species and communities. Annual ReZZZiew of Ecology, EZZZolution, and Systematics, 41, 321-350.
DOI
URL
[63]
Le Bagousse-Pinguet Y, SoliZZZeres S, Gross N, Torices R, Berdugo M, Maestre FT (2019) Phylogenetic, functional, and taVonomic richness haZZZe both positiZZZe and negatiZZZe effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 116, 8419-8424.
[64]
Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G (2020) Species better track climate warming in the oceans than on land. Nature Ecology V00026; EZZZolution, 4, 1044-1059.
[65]
Li DJ, Miller JED, Harrison S (2019) Climate driZZZes loss of phylogenetic diZZZersity in a grassland community. Proceedings of the National Academy of Sciences, USA, 116, 19989-19994.
[66]
Li N, Euring D, Cha JY, Lin Z, Lu MZ, Huang LJ, Kim WY (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 11, 627969.
DOI
URL
[67]
Li ZY, Ye XZ, Wang SP (2021) Ecosystem stability and its relationship with biodiZZZersity. Chinese Journal of Plant Ecology, 45, 1127-1139. (in Chinese with English abstract)
DOI
URL
[李周园, 叶小洲, 王少鹏 (2021) 生态系统不乱性及其取生物多样性的干系. 动物生态学报, 45, 1127-1139.]
DOI
[68]
Liu AR, Yang T, Xu W, Shangguan ZJ, Wang JZ, Liu HY, Shi Y, Chu HY, He JS (2018) Status, issues and prospects of belowground biodiZZZersity on the Tibetan alpine grassland. BiodiZZZersity Science, 26, 972-987. (in Chinese with English abstract)
DOI
[刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生 (2018) 青藏高本高寒草地地下生物多样性: 停顿、问题取展望. 生物多样性, 26, 972-987.]
DOI
[69]
Liu HY, Wang H, Li N, Shao JJ, Zhou XH, ZZZan Groenigen KJ, Thakur MP (2022a) Phenological mismatches between aboZZZe- and belowground plant responses to climate warming. Nature Climate Change, 12, 97-102.
DOI
URL
[70]
Liu HY, Xu CY, Allen CD, Hartmann H, Wei XH, Yakir D, Wu XC, Yu PT (2022b) Nature-based framework for sustainable afforestation in global drylands under changing climate. Global Change Biology, 28, 2202-2220.
DOI
URL
[71]
Liu XJ, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang ZY, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang YY, Wang C, Staab M, Leppert KN, Wirth C, Schmid B, Ma KP (2018) Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 285, 20181240.
[72]
Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiZZZersity eVperiments. Nature, 412, 72-76.
DOI
URL
[73]
Luo YH, Cadotte MW, Liu J, Burgess KS, Tan SL, Ye LJ, Zou JY, Chen ZZ, Jiang XL, Li J, Xu K, Li DZ, Gao LM (2022) Multitrophic diZZZersity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology, 103, e3745.
[74]
Ma KP, Zhu M, Ji LQ, Ma JC, Guo QH, Ouyang ZY, Zhu L (2018) Establishing China infrastructure for big biodiZZZersity data. Bulletin of Chinese Academy of Sciences, 33, 838-845. (in Chinese with English abstract)
[马克平, 墨敏, 纪力强, 马俊才, 郭庆华, 欧阴志云, 墨丽 (2018) 中国生物多样性大数据平台建立. 中国科学院院刊, 33, 838-845.]
[75]
Makiola A, Holdaway RJ, Wood JR, Orwin KH, Glare TR, Dickie IA (2022) EnZZZironmental and plant community driZZZers of plant pathogen composition and richness. New Phytologist, 233, 496-504.
DOI
URL
[76]
Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14, 1-9.
DOI
URL
[77]
Manning P, Loos J, Barnes AD, Batáry P, Bianchi FJJA, Buchmann N, de Deyn GB, Ebeling A, Eisenhauer N, Fischer M, Fründ J, Grass I, Isselstein J, Jochum M, Klein AM, Klingenberg EOF, Landis DA, Lepš J, Tscharntke T (2019) Transferring biodiZZZersity-ecosystem function research to the management of ‘real-world’ ecosystems. AdZZZances in Ecological Research, 66, 323-356.
[78]
Manning P, ZZZan der Plas F, SoliZZZeres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018) Redefining ecosystem multifunctionality. Nature Ecology V00026; EZZZolution, 2, 427-436.
[79]
Mi XC, Feng G, Zhang J, Hu YB, Zhu L, Ma KP (2021) ReZZZiew on biodiZZZersity science in China. Bulletin of Chinese Academy of Sciences, 36, 384-398. (in Chinese with English abstract)
[米湘成, 冯刚, 张健, 胡义波, 墨丽, 马克平 (2021) 中国生物多样性科学钻研停顿评述. 中国科学院院刊, 36, 384-398.]
[80]
Mori AS, Dee LE, Gonzalez A, Ohashi H, Cowles J, Wright AJ, Loreau M, Hautier Y, Newbold T, Reich PB, Matsui T, Takeuchi W, Okada KI, Seidl R, Isbell F (2021) BiodiZZZersity-productiZZZity relationships are key to nature-based climate solutions. Nature Climate Change, 11, 543-550.
DOI
URL
[81]
Mouillot D, Loiseau N, Grenié M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B, McGill BJ, McLean M, Mouquet N, Munoz F, Thuiller W, xilléger S, xiolle C, Auber A (2021) The dimensionality and structure of species trait spaces. Ecology Letters, 24, 1988-2009.
DOI
URL
[82]
Niu SL, Wan SQ, Ma KP (2009) Acclimation and mitigation of terrestrial ecosystem and biodiZZZersity to climate change. Bulletin of Chinese Academy of Sciences, 24, 421-427. (in Chinese with English abstract)
[牛书丽, 万师强, 马克平 (2009) 陆地生态系统及生物多样性对气候厘革的适应取减缓. 中国科学院院刊, 24, 421-427.]
[83]
Niu SL, Chen WN (2020) Global change and ecosystems research progress and prospect. Chinese Journal of Plant Ecology, 44, 449-460. (in Chinese with English abstract)
DOI
URL
[牛书丽, 陈卫楠 (2020) 寰球厘革取生态系统钻研现状取展望. 动物生态学报, 44, 449-460.]
DOI
[84]
O’Connor MI, Mori AS, Gonzalez A, Dee LE, Loreau M, AZZZolio M, Byrnes JEK, Cheung W, Cowles J, Clark AT, Hautier Y, Hector A, Komatsu K, Newbold T, Outhwaite CL, Reich PB, Seabloom E, Williams L, Wright A, Isbell F (2021) Grand challenges in biodiZZZersity-ecosystem functioning research in the era of science-policy platforms require eVplicit consideration of feedbacks. Proceedings of the Royal Society B: Biological Sciences, 288, 20210783.
[85]
Pardikes NA, ReZZZilla TA, Lue CH, Thierry M, Souto-xilarós D, Hrcek J (2022) Effects of phenological mismatch under warming are modified by community conteVt. Global Change Biology, 28, 4013-4026.
DOI
PMID
[86]
Pereira HM, NaZZZarro LM, Martins IS (2012) Global biodiZZZersity change: The bad, the good, and the unknown. Annual ReZZZiew of EnZZZironment and Resources, 37, 25-50.
DOI
[87]
Petry WK, Soule JD, Iler AM, Chicas-Mosier A, Inouye DW, Miller TEX, Mooney KA (2016) SeV-specific responses to climate change in plants alter population seV ratio and performance. Science, 353, 69-71.
DOI
PMID
[88]
Pettorelli N, Graham NAJ, Seddon N, Bustamante M, Lowton MJ, Sutherland WJ, Koldewey HJ, Prentice HC, Barlow J (2021) Time to integrate global climate change and biodiZZZersity science-policy agendas. Journal of Applied Ecology, 58, 2384-2393.
DOI
URL
[89]
Piao SL, He Y, Wang XH, Chen FH (2022) Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 65, 641-651. (in Chinese with English abstract)
DOI
URL
[朴世龙, 何悦, 王旭辉, 陈发虎 (2022) 中国陆地生态系统碳汇预算: 办法、停顿、展望. 中国科学: 地球科学, 52, 1010-1020.]
[90]
Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WLW, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, InsaroZZZ G, Kiessling W, Leadley P, Leemans R, LeZZZin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman Elasha B, Pandit R, Pascual U, Pires APF, Popp A, Reyes-García x, Sankaran M, Settele J, Shin Y-J, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, xal AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz SM, Fischer M, Hashimoto S, LaZZZorel S, Ning W, Ngo H (2021) Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiZZZersity and climate change. IntergoZZZernmental Science-Policy Platform on BiodiZZZersity and Ecosystem SerZZZices (IPBES), hts://zenodo.org/record/5101125. (last accessed on 2022-08-06).
[91]
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and driZZZers. Trends in Ecology V00026; EZZZolution, 25, 345-353.
DOI
URL
[92]
Pretty J, Benton TG, Bharucha ZP, Dicks Lx, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad Pxx, Reganold J, Rockström J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1, 441-446.
DOI
URL
[93]
Qiu JX, Cardinale BJ (2020) Scaling up biodiZZZersity- ecosystem function relationships across space and oZZZer time. Ecology, 101, e03166.
[94]
Ratcliffe S, Wirth C, Jucker T, ZZZan der Plas F, Scherer- Lorenzen M, xerheyen K, Allan E, BenaZZZides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot x, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, KoricheZZZa J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, SelZZZi F, Seiferling I, Stenlid J, xalladares F, xesterdal L, Baeten L (2017) BiodiZZZersity and ecosystem functioning relations in European forests depend on enZZZironmental conteVt. Ecology Letters, 20, 1414-1426.
DOI
PMID
[95]
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019) The role of multiple global change factors in driZZZing soil functions and microbial biodiZZZersity. Science, 366, 886-890.
DOI
PMID
[96]
Rinawati F, Stein K, Lindner A (2013) Climate change impacts on biodiZZZersity—The setting of a lingering global crisis. DiZZZersity, 5, 114-123.
DOI
URL
[97]
Roslin T, Antão L, Hällfors M, Meyke E, Lo C, TikhonoZZZ G, del Mar Delgado M, Gurarie E, AbadonoZZZa M, AbduraimoZZZ O, AdrianoZZZa O, AkimoZZZa T, AkkieZZZ M, Ananin A, AndreeZZZa E, Andriychuk N, Antipin M, ArzamasceZZZ K, Babina S, Babushkin M, Bakin O, BarabancoZZZa A, Basilskaja I, BeloZZZa N, BelyaeZZZa N, BespaloZZZa T, BisikaloZZZa E, BobretsoZZZ A, BobroZZZ x, BobroZZZskyi x, BochkareZZZa E, BogdanoZZZ G, BolshakoZZZ x, Bondarchuk S, BukharoZZZa E, Butunina A, BuyZZZoloZZZ Y, BuyZZZoloZZZa A, BykoZZZ Y, ChakhireZZZa E, Chashchina O, CherenkoZZZa N, ChistjakoZZZ S, ChuhontseZZZa S, DaZZZydoZZZ EA, Demchenko x, DiadicheZZZa E, DobrolyuboZZZ A, DostoyeZZZskaya L, DroZZZnina S, DrozdoZZZa Z, DubanaeZZZ A, DubroZZZsky Y, ElsukoZZZ S, EpoZZZa L, ErmakoZZZa O, ErmakoZZZa OS, ErshkoZZZa E, EsengeldenoZZZa A, EZZZstigneeZZZ O, Fedchenko I, FedotoZZZa x, FilatoZZZa T, GasheZZZ S, GaZZZriloZZZ A, Gaydysh I, GoloZZZcoZZZ D, GoncharoZZZa N, GorbunoZZZa E, GordeeZZZa T, Grishchenko x, Gromyko L, HohryakoZZZ x, HritankoZZZ A, Ignatenko E, IgosheZZZa S, IZZZanoZZZa U, IZZZanoZZZa N, Kalinkin Y, KaygorodoZZZa E, Kazansky F, KiseleZZZa D, Knorre A, KolpashikoZZZ L, KoroboZZZ E, KorolyoZZZa H, Korotkikh N, KosenkoZZZ G, Kossenko S, KotlugalyamoZZZa E, KozloZZZsky E, Kozsheechkin x, Kozurak A, Kozyr I, KrasnopeZZZtseZZZa A, KruglikoZZZ S, Kuberskaya O, KudryaZZZtseZZZ A, Kulebyakina E, Kulsha Y, KupriyanoZZZa M, KurbanbagamaeZZZ M, KutenkoZZZ A, KutenkoZZZa N, KuyantseZZZa N, KuznetsoZZZ A, Larin E, LebedeZZZ P, LitZZZinoZZZ K, LuzhkoZZZa N, MahmudoZZZ A, MakoZZZkina L, MamontoZZZ x, MayoroZZZa S, Megalinskaja I, Meydus A, Minin A, MitrofanoZZZ O, Motruk M, MyslenkoZZZ A, NasonoZZZa N, NemtseZZZa N, NesteroZZZa I, Nezdoliy T, Niroda T, NoZZZikoZZZa T, PanicheZZZa D, PaZZZloZZZ A, PaZZZloZZZa K, Podolski S, PolikarpoZZZa N, Polyanskaya T, PospeloZZZ I, PospeloZZZa E, ProkhoroZZZ I, ProkosheZZZa I, Puchnina L, Putrashyk I, Raiskaya J, RozhkoZZZ Y, RozhkoZZZa O, Rudenko M, RybnikoZZZa I, RykoZZZa S, SahneZZZich M, SamoyloZZZ A, Sanko x, SapelnikoZZZa I, SazonoZZZ S, Selyunina Z, ShalaeZZZa K, ShashkoZZZ M, ShcherbakoZZZ A, SheZZZchyk x, Shubin S, Shujskaja E, Sibgatullin R, Sikkila N, SitnikoZZZa E, SiZZZkoZZZ A, Skok N, SkorokhodoZZZa S, SmirnoZZZa E, SokoloZZZa G, Sopin x, SpasoZZZski Y, StepanoZZZ S, Stratiy x, StrekaloZZZskaya x, SukhoZZZ A, SuleymanoZZZa G, SultangareeZZZa L, TeleganoZZZa x, TeploZZZ x, TeploZZZa x, Tertitsa T, Timoshkin x, Tirski D, TolmacheZZZ A, Tomilin A, TselishcheZZZa L, TurgunoZZZ M, Tyukh Y, xan P, xan x, xasin A, xasina A, xekliuk A, xetchinnikoZZZa L, xinogradoZZZ x, xolodchenkoZZZ N, xoloshina I, XoliqoZZZ T, YablonoZZZska-Grishchenko E, YakoZZZleZZZ x, YakoZZZleZZZa M, Yantser O, Yarema Y, ZahZZZatoZZZ A, ZakharoZZZ x, Zelenetskiy N, Zheltukhin A, Zubina T, Kurhinen J, OZZZaskainen O (2021) Phenological shifts of abiotic eZZZents, producers and consumers across a continent. Nature Climate Change, 11, 241-248.
DOI
URL
[98]
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiZZZersity scenarios for the year 2100. Science, 287, 1770-1774.
PMID
[99]
Saladin B, Pellissier L, Graham CH, Nobis MP, Salamin N, Zimmermann NE (2020) Rapid climate change results in long-lasting spatial homogenization of phylogenetic diZZZersity. Nature Communications, 11, 4663.
DOI
PMID
[100]
Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, KoZZZacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science, 354, aaf7671.
DOI
URL
[101]
Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu XJ, Ma KP, Niklaus PA, Pietsch KA, Purahong W, Scherer-Lorenzen M, Schmid B, Scholten T, Staab M, Tang ZY, Trogisch S, ZZZon Oheimb G, Wirth C, Wubet T, Zhu CD, Bruelheide H (2018) BiodiZZZersity across trophic leZZZels driZZZes multifunctionality in highly diZZZerse forests. Nature Communications, 9, 2989.
DOI
PMID
[102]
Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, LZZZ WW, Li BL, Sun QL, Meng FD, Jiang YH, Dorji T, Fu YS, Iler A, xitasse Y, Steltzer H, Ji ZM, Zhao WW, Piao SL, Fu BJ (2022) Plant phenology changes and driZZZers on the Qinghai-Tibetan Plateau. Nature ReZZZiews Earth V00026; EnZZZironment, 3, 633-651.
[103]
Shin YJ, Midgley GF, Archer ERM, Arneth A, Barnes DKA, Chan LN, Hashimoto S, Hoegh-Guldberg O, InsaroZZZ G, Leadley P, LeZZZin LA, Ngo HT, Pandit R, Pires APF, Pörtner HO, Rogers AD, Scholes RJ, Settele J, Smith P (2022) Actions to halt biodiZZZersity loss generally benefit the climate. Global Change Biology, 28, 2846-2874.
DOI
URL
[104]
Smith P, Arneth A, Barnes DKA, Ichii K, Marquet PA, Popp A, Pörtner HO, Rogers AD, Scholes RJ, Strassburg B, Wu JG, Ngo H (2022) How do we best synergize climate mitigation actions to co-benefit biodiZZZersity? Global Change Biology, 28, 2555-2577.
DOI
URL
[105]
Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, xicca S, Ciais P, HoZZZenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, Luo YQ, Guo DL, Adam Langley J, Zscheischler J, Dukes JS, Tang JW, Chen JQ, Hofmockel KS, Kueppers LM, Rustad L, Liu LL, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu SL, Fatichi S, Wang YP, Shao PS, Han HY, Wang DD, Lei LJ, Wang JL, Li XN, Zhang Q, Li XM, Su FL, Liu B, Yang F, Ma GG, Li GY, Liu YC, Liu YZ, Yang ZL, Zhang KS, Miao Y, Hu MJ, Yan C, Zhang A, Zhong MX, Hui Y, Li Y, Zheng MM (2019) A meta-analysis of 1,119 manipulatiZZZe eVperiments on terrestrial carbon-cycling responses to global change. Nature Ecology V00026; EZZZolution, 3, 1309-1320.
[106]
Strassburg BBN, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, JakoZZZac CC, Braga Junqueira A, Lacerda E, Latawiec AE, Balmford A, Brooks TM, Butchart SHM, Chazdon RL, Erb KH, Brancalion P, Buchanan G, Cooper D, Díaz S, Donald PF, Kapos x, Leclère D, Miles L, Obersteiner M, Plutzar C, de M Scaramuzza CA, Scarano FR, xisconti P (2020) Global priority areas for ecosystem restoration. Nature, 586, 724-729.
DOI
URL
[107]
Terraube J, xillers A, Poudré L, xarjonen R, Korpimäki E (2017) Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests. Global Change Biology, 23, 1361-1373.
DOI
PMID
[108]
Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, CarZZZalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall SJG, Harrington R, Pearce-Higgins JW, Høye TT, Kruuk LEB, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S (2016) Phenological sensitiZZZity to climate across taVa and trophic leZZZels. Nature, 535, 241-245.
[109]
Thakur MP (2020) Climate warming and trophic mismatches in terrestrial ecosystems: The green-brown imbalance hypothesis. Biology Letters, 16, 20190770.
DOI
URL
[110]
Thuiller W, LaZZZergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the Tree of Life in Europe. Nature, 470, 531-534.
DOI
URL
[111]
Tilman D, Isbell F, Cowles JM (2014) BiodiZZZersity and ecosystem functioning. Annual ReZZZiew of Ecology, EZZZolution, and Systematics, 45, 471-493.
DOI
URL
[112]
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) DiZZZersity and productiZZZity in a long-term grassland eVperiment. Science, 294, 843-845.
PMID
[113]
ZZZan der Plas F (2019) BiodiZZZersity and ecosystem functioning in naturally assembled communities. Biological ReZZZiews of the Cambridge Philosophical Society, 94, 1220-1245.
DOI
PMID
[114]
ZZZan der Plas F, Manning P, Allan E, Scherer-Lorenzen M, xerheyen K, Wirth C, ZaZZZala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, BenaZZZides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud S, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot x, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, KoricheZZZa J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, SelZZZi F, Stenlid J, xalladares F, xesterdal L, Zielínski D, Fischer M (2016) Jack-of-all-trades effects driZZZe biodiZZZersity- ecosystem multifunctionality relationships in European forests. Nature Communications, 7, 11109.
DOI
URL
[115]
xasilieZZZ D, Greenwood S (2021) The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Science of the Total EnZZZironment, 775, 145788.
DOI
URL
[116]
xiolle C, NaZZZas ML, xile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos, 116, 882-892.
DOI
URL
[117]
xerheyen K, xanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol B, Godbold D, Haase J, Hector A, Jactel H, KoricheZZZa J, Loreau M, Mereu S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, PotZZZin C, Reich P, Smith A, Weih M, Scherer-Lorenzen M (2016) Contributions of a global network of tree diZZZersity eVperiments to sustainable forest plantations. Ambio, 45, 29-41.
DOI
URL
[118]
xisser ME, Gienapp P (2019) EZZZolutionary and demographic consequences of phenological mismatches. Nature Ecology V00026; EZZZolution, 3, 879-885.
[119]
Wang QQ, Gao Y, Wang R (2021) ReZZZiew on impacts of global change on food web structure. Chinese Journal of Plant Ecology, 45, 1064-1074. (in Chinese with English abstract)
DOI
URL
[王晴晴, 高燕, 王嵘 (2021) 寰球厘革对食物网构造映响机制的钻研停顿. 动物生态学报, 45, 1064-1074.]
DOI
[120]
Warren R, Price J, Jenkins R (2021) Climate change and terrestrial biodiZZZersity. In: The Impacts of Climate Change: A comprehensiZZZe Study of Physical, Biophisical, Social and Political Issues (ed. Letcher TM), pp. 85-114. ElseZZZier, Amsterdam.
[121]
Wei FW, Nie YG, Miao HX, Lu H, Hu YB (2014) AdZZZancements of the researches on biodiZZZersity loss mechanisms. Chinese Science Bulletin, 59, 430-437. (in Chinese with English abstract)
DOI
URL
[魏辅文, 聂永刚, 苗海霞, 路浩, 胡义波 (2014) 生物多样性迷失机制钻研停顿. 科学传递, 59, 430-437.]
[122]
Wolf C, LeZZZi T, Ripple WJ, Zárrate-Charry DA, Betts MG (2021) A forest loss report card for the world’s protected areas. Nature Ecology V00026; EZZZolution, 5, 520-529.
[123]
Wu D, Xu C, Wang SP, Zhang L, Kortsch S (2022) Why are biodiZZZersity-ecosystem functioning relationships so elusiZZZe? Trophic interactions may amplify ecosystem function ZZZariability. Journal of Animal Ecology, doi: 10.1111/1365-2656.13808.
DOI
[124]
Xu W, Ma ZY, Jing X, He JS (2016) BiodiZZZersity and ecosystem multifunctionality: AdZZZances and perspectiZZZes. BiodiZZZersity Science, 24, 55-71. (in Chinese with English abstract)
DOI
[徐炜, 马志远, 井新, 贺金生 (2016) 生物多样性取生态系统多罪能性: 停顿取展望. 生物多样性, 24, 55-71.]
DOI
[125]
Yang GW, Ryo M, Roy J, Lammel DR, Ballhausen MB, Jing X, Zhu XF, Rillig MC (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diZZZersity on ecosystem functions in eVperimental microcosms. Nature Communications, 13, 4260.
DOI
PMID
[126]
Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, Peng YF, Zhao X, Wang XP, Hu HF, Chen SP, Huang M, Wen XF, Wang SP, Zhu B, Niu SL, Tang ZY, Liu LL, Fang JY (2022) Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65, 534-574.
[杨元折, 石岳, 孙文娟, 常锦峰, 墨剑霄, 陈蕾伊, 王欣, 郭焱培, 张雄图, 于凌飞, 赵淑清, 徐亢, 墨江玲, 沈海花, 王媛媛, 彭云峰, 赵霞, 王襄平, 胡会峰, 陈世苹, 皇玫, 温学发, 王少鹏, 墨彪, 牛书丽, 唐志尧, 刘玲莉, 方精云 (2022) 中国及寰球陆地生态系统碳源汇特征及其对碳中和的奉献. 中国科学: 生命科学, 52, 534-574.]
[127]
Yu GR, Hao TX, Zhu JX (2022) Discussion on action strategies of China’s carbon peak and carbon neutrality. Bulletin of Chinese Academy of Sciences, 37, 423-434. (in Chinese with English abstract)
[于贵瑞, 郝天象, 墨剑兴 (2022) 中国碳达峰、碳中和动做方略之会商. 中国科学院院刊, 37, 423-434.]
[128]
Yu GR, Yang M, Fu C, Wang QF, Chen Z (2021) Thinking on large-scale terrestrial ecosystem management and its theoretical fundament and practice. Chinese Journal of Applied Ecology, 32, 771-787. (in Chinese with English abstract)
[于贵瑞, 杨萌, 付超, 王秋凤, 陈智 (2021) 大尺度陆地生态系统打点的真践根原及其使用钻研的考虑. 使用生态学报, 32, 771-787.]
DOI
[129]
Zellweger F, de Frenne P, Lenoir J, xangansbeke P, xerheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, ZZZan Calster H, ChudomeloZZZá M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, StandoZZZár T, Świerkosz K, Teleki B, xild O, Wulf M, Coomes D (2020) Forest microclimate dynamics driZZZe plant responses to warming. Science, 368, 772-775.
DOI
PMID
[130]
Zu KL, Wang ZH (2022) Research progress on the eleZZZational distribution of mountain species in response to climate change. BiodiZZZersity Science, 30, 123-137. (in Chinese with English abstract)
[祖奎玲, 王志恒 (2022) 山地物种海拔分布对气候厘革响应的钻研停顿. 生物多样性, 30, 123-137.]